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Summary

The paper describes a model developed by Lissaman (Refs. 1 and 2) for predicting
power output of a general array of wind turbines. This involves a computer program capable
of handling any number of identical wind turbine units at any power coefficient or height in an
array of arbitrary geometry on level terrain, as the wind direction varies through 360°.

The fluid mechanics of wake development are analysed and it is shown that the momentum
deficit behind each unit will be ¢ onserved downstream. Thus, if radius and wake profile are
known, the wake velocity can be determined. Wake profiles established from previous experi-
mental work in co-flowing jets are used, and wake radius determined by assuming the wake
growth is caused by both ambient and mechanically generated turbulence. The latter controis
while ambient turbulence dominates the downstream development. A
the combined effects of ambient and mechanical turbulence is given. Ground
and multiple turbine interactions by averaging and

the initial growth,
procedure to handle
effect is simulated by imaging techniques,

superposition methods. .
An example on the use of the model is presented. The results indicate that for large
ometry.

arravs sienificant power losses can occur for improper ge
’ : ; rbulence is surveyed. This shows that the bigger the

The importance of natural tu e e sl
array, the more important it is to get an estimate o s turbulence.
A Finally, wake profiles obtained in field tests at the 60 kW test unit at Kalkugnen, Sweden,
are compared ;0 what is predicted by the model. A very good correlation is found which

strongly supports the model.
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Litroduction
I L e

Tig ct_wct?,l\l.w.‘m::;s of a i"rmu' tnergy Collection System (WLCS) depends crucially on tie
availuvle wind cnergy. For units positioncd Inoan array, the anrvy extraction by
GOWIW LG WIS IS revuced. The arount of this encrmy dayrndution 15 of critical
pportiice laoassessing the system cost (:f‘t'gctj\,’c-h;;;g, ’ .

Siice L siealsh policy is to Luild larpe arrays in favorable locations it was
Gecldea by the sational board for lnergy Soure Jc\:blopx ent (;‘,'lv.) that rv.‘;u;!‘rch \\J;i'.‘ to
ve mdee 1 this area. ue of the principal contributions here is tie rodel waiich
roreter Lissaran at Acroviromuent Inc. developed under contract to M. lmuring jar
of tuls period tne author worked directly witis Dr Lissaran. lhe vork was perforred in
o aadses wuring tie Rcrioq uctober 1u7o-tlay 1977 ard resulted in tvo rciortSZ
faCt) LL{cchvgncss of Arrays of Wind Lnergy Collection Systems Ihase I (ief. 1) and
paase 11 (Let, 2) At the enu of the parer some model predictions are corpared witn
peasurerehts d4round a wina power test wnit in Sweden.

weneral fluid physics

pecduse of the many variatles that are involved in the wakeflow in a typical wind
turblue array tne prediction of interaction between multiple wakes becones exceedingly
complex. Furtherore work in this arca is quite new so tliere is a lack of relevant
test atd. ror these reasons we have to simplify the problem and look for rarallels.
we assunie tirat the ware of a single power generating rotor to ke quite similar fluid
nechanically to taat of a circular jet imersed in a uwifommn {lovw, as shown by
;oravovicn (Lef. 5). Tae word jet is usually associated with a flow of higher specd
twan tie outer flow but in all cases nere the speed is lower than that of the outer
{low. 1nat is tue jet is actually wake- like, a case also extensively studied
tacoretacally and experinentally by Abranovicn. The general process of wake develop-
nent bLendna tne turbine is that tne wale grows by turbulent centrainment at its eadge
wiiC. Introuuces free stream momentun as well as nass into the wake while conserving
certain global preperties.

There arc thiree controlling parameters for the wake development:

a) lor a constant pressure wake the momentur ceficit in the wake is comserved.
u.ds describes tue turbine drag and rust be constant dovustrear. This is defined by

Mpe M g ;
te lhtcgra{sig(l-r)rur acress tie Lane
. 0“0, akl e - i
Lue vane growth rate Iy, defined by the turbulent rmixing.

oy,

C) lac wasne profile at given radius r given by T =}(F), defined by various
0 LY

sindlarity profiles witn experimentally detcrmined constants.

10 sirglify tue analysis we assure a unifom incoming wind profile and uniform
inconiag natural sneargenerated turbulence.

lue nonentw. deficit in a) can be computed from the initial profile of the waie
wilca ca be uirectly related to tiie drag of the rotor and the power output.

Jlranovic cefires the noncinensional profiles of the wake using analytical ferris
Lased on a large amount of experimental data from turtulent
wistrean dircection, progressing smoothly iror the
a: of the rotor to the asynptotic profile far

0i we velocity proiiles,
jets. luese profiles varying in a do
inrtial profile iruiediately cownstre
wOWin 1nC. 1S gives us ).

For a ronturbulent outer flow mechanically prouucgd turbulence 1is developed py_t}m
veleclty graaient at tne vake euge aud by the rotor 1tsc}§ (rotational terms wnica
arc suall and neglected). In 4 nonturpulent outer flow this turbulence comy letely
con.ols the rate of growtu of the wanc.

LOWOVOT When tae rotor is immersed in an outer flow containing aribient turbulence
tuis turbulence will in soue way add to the mechanically produced turbulenc? present.
Lie nechanically produced turbulence which 1s reluted to the wake ridlus and Ye%oczty
dericic rapidly decays, so tnat tae wake grovtl. rate due to this effect stead11)~ .
wecreases, We tuaen expect tnat the aubient turbulence will start to control the wale
LTOWL as the rotor and nomentum turbulence decays. :

We now assume that tne twe turbulence sereration processes occur independently as
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dispersioi.
snat the plune dimension grows approx

where a = 1S tur ity ratio qT/b. Ve can now ecuate

e ulence. Go/dN ~ @ pulent velocl .
tiiogiilzf’t:m;oxt of the Gaussian cistribution used in plune analysis to the
particular near Laussian distribution used for the velocity deficit. This gives us
di/dn = w/u.51 where the namerical constant 0.51 connects the outer wake radius of tne
awranovich profile with the effective plune width.

e constant o can be calculated from the environmental conditions of wind speed,
(ToWiG TOUEInNEss and insolation whicn control the wind ambient turbulence.

e tnen asswe that the natural windshcar turbulence generating process 1is
sulliciently strong that changes within the array can be neglected which gives us a
constait a within the array. We can now evaluate the last controlling parameter c).
Figure I siows the geometry of the wake as given by Abramovich but modified for a
turpulent cuter flow. The wake is divided into four regions. In the first region a
turoulenc region extends outward and inward from the edge of the wake surrounding the
potenitial core of unifona flow. The initial region terminates when these shear layers
?j:ig&rgzst:?edccntcr so that the center velocity deficit starts to reduce. As it
lfeu‘buo‘:axzzregtjl;;:‘::[?fcfhe wake profile transitions from this profile to the as)Ttetic
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after a few tens of radii downstream. Thus the transfer of velocity deficit will be
similar to that of an inert scalar. The situation then becomes analogous to pollution
concentration due to nelghboxjmg plumes. Where, because of the linearity of the
process one miay simply superimpose the respective plume concentrations. This super-
posicion conserves pollutant mass in the analog situation and in our case conserves
the momentum deficit, or drag of each unit, and thus satisfies drag conservation.

For the case where a turbine is immersed wholly or partly by a wake, this reduces
the mean velocity over the turbine disc. This reduced mean velocity is calculated and
used as tne new incoming velocity for that turbine. Furtheron we assume that the
turbulence created by this turbine does not affect the growth of the impinging wake
{urtaer downstream.

~Tue situation is shetched in figure 3 where we can see that all the wakes are
simply superimposed. This super imposition means that to finc the velocity we simply
add the velocity decrements from the wakes involved and subtract this from the free
stream velocity.

gyround effect

The grom_ld plane has an effect in reducing vertical downward wake growth both by the
suppression of turbulent velocity near the ground and by the direct presence of the
groud (the Image effect). For the concentration of inert pollutants the ground effect
has veen extensively studied and the standard approach is to model it by classical
reflexion techniques. In the case with wind turbines this means that we place an image
turvine at a distance below the ground plane equal to the height above the ground of
tne actual machine. This produces two parallel offset and eventually overlapping wakes
oriented vertically as shown in figure 4. The velocity decrement from the two wakes is
aaded in the manmer described previously for the overlapping of conventional wakes.
‘Inis wodel does not directly account for the suppression of turbulence near the ground
but gives rational ground effect profiles, conserves momentum deficit and assure no
waire momentum transfer into the ground.

tower calculation

Since we now have the velocity decrement anywhere in the array we can compute the mean
velocity over each turbine disc as a nultiple of the free stream velocity.

Ui = k; Uy, kel.
Cuving tnis we get the power available for each turbine as a multiple of the free
strear power

3
). = *
Ii kiP

Tnis can be done for an arbitrary array and, with the help of a coordinate system
that rotates with the incoring wind, for an arbitrary wind direction.

Loiputer code

routines for tne calculations described in previous sections were written assuming.

a) Flat and level terrain
~ b) unifom incoming windprofile. _
lais is an approximation to the actual situation, where the planetary boundary layer
prouuces a vertical sieargradient. The present mocel assumes that the wind speed at
tie turbine axis will be & satisfactory approximation for the non-uniform wind field.

c) All tue turbines operate at a constant power coefficient Cp
d) Tie tower shadow is neglected.
The computer rodel now gives us the effective mean power ratio:
(1/n) 91 (ki)3 , = mmber of windmills
im .

{ron ay, arbitrary array with arbitrary oncoming y}inc'i*directior_l' This ratio is the ratio
of tine array power to the array power for each turbine operating in a free stream. The
eifective power ratio (ki)’ for each turbine is ofcourse also available.
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iXercise of Conputer model
- . . I e el
AS tne COuputer niodel stands today it is simple and efficient to usc for Investipg-
tions of varioys array geometries. This has been done for a number of cases from tpe
siplest case with only two windmills up to complex configurations of 8¢ units ip
irregular arrangements. To illustrate this and how the model can be used in a futyy
plamning of WLLS we {irst take a look at a study perfomed by the Swedish State Power
Board publisied ip a report from AL (lLef. 4).
ine intention was to
Ule WOork tnat is to Le done inareal case.
winds and flat levelled terrain were selected. When doing this, concern was taken to
i Serve and areas for open air life. For each site an array of tyr-
d and in this detailed plarming,roads, landscape, faming, Dower-
lines etc. were takep into consideration. lepending on the size of the array the
following mininum distance hetweer twe adjacent windmills were given, based on earlier
results vy carl Crafford (lef. 3):array 3» 100 units mininun distance 20 radii 25 <
array < 10 units minimu distance 14 radii,
lic size of the turbines Were 25 or 50 meter radii (1 or 4 V), hubheight 50 or 100
LOTETS. Llgure 5 shiows one of the sites in northern Uppland wlere a large array of 8 ‘
windiiills was arranged in two rows 4cross the Prevailing winddirection. The great '
POWET and enpineering value of tne Lissanan mode] 1s that a truly arbritrary array cn |
vt selected. We go ot have to Ceutine arrays to square grids, hexagons or the like,
obut are {rece to deiing aly array in a real world, accouwiting for any topographic or
LA Lade features. 1his makes it of immediate Practical value {or WECS planners.
»€ NOow apply the Lissaman model on this Study. To do so we {irst input the
coorulnates for each winaill whilch we sinply get by placine a coordinate syster on
Tigure 5, sce figure o6, Assuning a Power coefficient by = 0.5 and ambient turbulence
« = U.Us, wiiich isrepresentativefor 4 €ase with noderate winds (> 2 m/s) blowing over
tlat grasslana ﬁ(z,0=0.10 n) in a neutrally Stratirieq atmosphere, we pet the valucs
iliustrated in figure 7, '
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and planning tool for finding the optimum design of an array of windturbines.

The ambient turbulence a

To get an understanding of the importance of o a number of cases were run with several
a values in the range

0.0 <a < 0.10

wiich rcyrcscn§§‘casc§ from very stably strafied atmosphere with practically no
turbulence to cases with strong winds in rough terrain.

e results so far indicate that for small arrays the turbulence term is not so
important 1i we look at the mean power ratio for the whole array and all wind-
d1rect10ns._§t_seems thqt with low turbulence the wake is narrow and contains a large
momentum delicit, but since the dimensions of the wake are so small it rarely hits the
otner WLthurblqgs.ln the array. When the turbulence is stronger the wake is wider and
the velocity deficit diluted. This wake hits other turbines more often but with weaker
strengtlh. In_the average this means that the difference between high and low turbu-
lence cases 1s small as long as the size of the array is small.

~ For an array of 4 units, with the windmills placed in the corners of a square with
the side 4 radii, the difference in mean power between a= 0.01 and a= 0.10 is only
-3 percent. When the array grows this difference also grows. For the case in figure
7 cited above the following results were found

a= 0.0 P= 0.751
o= 0.05 D= 0.837
a= 0.10  P= 0.883

We see that there is up to 13% difference. When the array grows in size the wakes
in tue turbulent case soon becomes so diluted that they do not affect other turbines
while for the nonturbulent case they still hold a large amount of velocity deficit at
great distances. This supports our intuition that in strong ambient turbulence there
cornot be persistent wake effects. This implies that the bigger the array the more
careful one should be in getting a good estimate of the expected turbulence at the
site. Tne implication being that a large array, with many straight lines of units,
can experience severe 'flat spots' in power when wind with weak turbulence blows

parallel to a line of turbines.

Wake nieasurenents
At tae 60 kIV test unit in xalkugnen,Sweden, continuous measurements of windspeed,
winduirection, terperature and effective power have been made since Septermber 1977.
(tef. o). Two 42 m high masts are equipped with cup anemometers at 6 levels and wind-
direction vanes at two levels. Temperature is measured at 6 levels in one of the masts
put tiis instrurentation is not functioning fully yet. Fig. 8 shows a map of the site
aila tie location of tie masts and trhe windmill. One of the purposes with the meteoro-
logical program was to investigate the wake of the windmill. This was also the main
reason for placing the masts and the test unit on a straight line. During the period
tover to veceniber 1977 a case of 4 hours duration cccurred when the turbine extracted
cLergy from the wind and tae direction of the wind was along this line.

Fig. v saows one of the 1 min mean wind profiles. The winddirection was between
20-40 cegrees. In order to get an estimate of the wind velocity deficit in the wake
one 1ust corpare profiles from the same mast. This 1s so because with winds from this
sector, tie two masts experience wind from different dovnvind fetches. The north mast
éxperiences voth a sea and a land fetch but the south only a 1apd_fetgh (which is
partly the sare as that for the north mast). They_therefore exhibit different wind
profiles and cases with and without energyextraction must thercfore be evaluated from
tue sare past. lne undisturved profiles from the other mast can then be used as a
Cueckh that the wind is blowing from this sector and that the meteorological conditions
were sindiiar. To be able to calculate the velocity deficit we must therefore in some
way recoustruct the original undisturbed profile. Fig. 10 shows the mean wind profiles
for tie sector 20-40° in October and hovember 1977. e clearly sce that the profile
for the south mast can be approximated with two straight lines. Since we can expect
near neutral conditions this is consistent with the logaritmic windlaw. The two
Straigat lines can be identified as two Loundary layers one from the open rough
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:\s;xulsi;;\ tnis value to be valid for the rest of t'lergtion. Tn this way we find 12
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clearly distinguished wake profiles. (1he ?m\fzelzji;ii‘ty deficit profile for two of tigg,
minute cacn tenthminute). Figure 12 ?HO“; ctzlle'c3 deficit is found at 27 m while the hyj-
Loz Bl e whke mrafles Lie mad i %{'c Olméscql)o rises 5 m from the seashore to tpe
peigut Telative to the mast 1S :_§‘m: or bably the reason for the diftcrence betweey
winunill and tien levels out. This 1s probab 4 where in the wake the mcasured
wake center and nub neignt. Tne question now 1s wi ' : Figh ve the i
i i : inddi ion i t measurced with accuracy enough to give the in-
protile lies. The winddirection is not n . o : R r <k
: : - ; hat all the 12 profiles lie 1n the center of the
1omation we need. If we assume that a =5 7 this with the actual C,
- “ , 51 1
wake cain we calculate wnat G, that would give and COT;"*PM'S Cicit as {
. - < N 3 2 . A N 2V 4 3 <
neasured by SAAS-Scania. Gy ~1s found from the velocity deilcit as
C = 1/2+ml-1-1)/2 3

where n 1s defined as the ratio of the f{ree stream velocity U,, to that of the
velocity in tne wake immediately benind the turbine Umo’ m= UO/UmO. Ihe results fron

tiis calculation is found in table 2 a). We sece that there is a very good agreerment
tor tie first 8 profiles wnich implies that these profiles lies close to the center-
line in tue wake. ‘ine next four profiles have a lower C_ than neecded vhich implies
tuat tuese profiles are to be found in the outer regionlof the wake. The last profile
ias a higner (, than possible. This can be explained as a result of tle simplified
Letiou of reconstructing the profiles.

_ u?lw.m lﬂof tablg Z b) gives the energy deficit calculated from the first 8 profiles
I‘x.e‘scconq },olmfm)gl‘vcs.tneﬁ turbine power, for the calculated velocity deficit
ulg_uld‘ged vy bzﬁ\o-bcal_ua. lhe good agreerent gives further evidence to bélie"é that
tiese elgnt profiles lies close to the wake Centerline h
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and ratiorally incorporates all the major variables effecting WECS wakes.

2) The computer model requires only simple physical inputs, and can readily accomo-
date a completely arbitrary WECS array for all wind directions. The output gives the
power avallable to each unit and the array as a whole. Changes in the array georetry
or other 1nputs are easy to make and g profitable cormmunication between the user and

the model can soon be established. Thus it consitutes an important and useful
engineering tool.

- N (- SO Ta 1 q i ]
5) kxercise of the model has indicated that for large arrays significant power losses
¢can occur for improper geometry.

4) Field experiments conducted by the De niversity

oo ) . partment of Meteorology, Uppsala University
on the 00 KW WL(:b—wut at Kalkugnen, Sweden have strongly suppox"ted the model.
Available data shows very good correlation with the Lissaman model.

Iuture work

’l_‘h¢ prcsgxxt model deals with the major aspects of the problem and forms a valuable
frame work for investigating the effects of array geometry for many purposes related
to technical and economic effectiveness of wind turbine arrays.

There are, however, three obvious areas in which future work could be profitably
conducted. These are:

1) Testing of model against actual results obtained in field and windtunnel
experiments. The field test is going at present.

2) Dmproving the meteorology and fluid mechanics incorporated in the model. This
could be done by adding a meteorological boundary layer model which calculates the
appropiate wind and turbulence profiles and by adding a more complex representation
of the flow field as boundary layer flow.,

3) Improving and augmenting the computer code by incorporating additional
subroutines and refinements like a variable power coefficient Cp
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8 Fe P R, R,
! 29 28 18 19
2 2 26 18 19
3 5 32 20 19
¢ “ 2 2 19
5 2% 23 20 19
6 23 2 18 19
7 8) 70 © 19
8 6 10 17 19

Table 2b. P Power deficit calculated from the velocity deficit profiles (kW).

o

I?m Measured power production at same wind speed as for P. (kW).
I\C '.rake rad}us found from the velocity deficit profiles (m).
R{ = Wake radius calculated by the Lissaman model (m).
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Fig. 4 Image representation of ground plane
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Fig. 3 Illustrates how the wakes in a wind tur-
bine array are simply superimppsed
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Fig. 5 Map of one of the real world theoretically planned test sites, with an
array of 80 units,
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Fig. 7 P.ower ratio for the 80 wind turbine array in figure 5 as a function of wind
direction. Also in the figure is the wind direction distribution counted as
percentage where 1.0 equals 100% (dotted line)
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